Preview

Уральский медицинский журнал

Расширенный поиск

Нарушение дофаминергической системы в патофизиологии сахарного диабета

https://doi.org/10.52420/2071-5943-2023-22-4-119-127

Полный текст:

Аннотация

Введение. Сахарный диабет (СД) – наиболее распространенная эндокринопатия с высоким ростом заболеваемости и большим количеством осложнений.

Цель работы – провести аналитический обзор литературы с оценкой состояния проблемы нарушения дофаминергической системы при СД с патофизиологических позиций.

Материалы и методы. Поиск проведен в базах данных и электронных библиотеках Cochrane Library, PubMed, eLibrary, Medscape по поисковым словам: сахарный диабет (diabetes mellitus), дофамин (dopamine), инсулин (insulin), дофаминергическая система (dopaminergic system), диабетическая энцефалопатия (diabetic encephalopathy). Для обзора отобрано 66 источников.

Результаты и обсуждение. Дисфункция дофаминергической системы может рассматриваться в качестве важного компонента патофизиологии СД. Гиперактивация выработки дофамина (ДА) на фоне СД ингибирует синтез инсулина, что приводит к гипергликемии. С другой стороны, гипоинсулинемия запускает активацию дофаминергической системы, формируя порочный круг. Увеличение выработки ДА при СД играет важную роль в формировании вторичной дисфункции центральной нервной системы, в первую очередь за счет развития церебральной недостаточности. Многочисленные доклинические исследования подтверждают дисфункцию дофаминергической системы (ее активацию) при СД. Клинические исследования по данной проблематике малочисленны и требуют дальнейшего изучения.

Заключение. Дисфункция дофаминергической системы при СД является актуальным направлением изучения патофизиологии симптомов неврологических нарушений данного заболевания. СД 1 и 2 типа − патогенетически разные заболевания, и поэтому нарушения выработки ДА могут быть обусловлены недостаточностью инсулина у больных с СД 1 типа, разными сроками манифестации, с гиперинсулинемией и инсулинорезистентностью при СД 2 типов. Поиск достоверных методов диагностики дисфункции дофаминергической системы может улучшить понимание происходящих патологических процессов в нейроэндокринной системе при СД, что важно в решении вопросов их коррекции в дополнение к патогенетической терапии.

Об авторах

Ю. В. Быков
Ставропольский государственный медицинский университет
Россия

Юрий Витальевич Быков, кандидат медицинских наук, 

Ставрополь



В. А. Батурин
Ставропольский государственный медицинский университет
Россия

Владимир Александрович Батурин, доктор медицинских наук, профессор, 

Ставрополь



Список литературы

1. Piątkowska-Chmiel I, Gawrońska-Grzywacz M, Popiołek Ł et al. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment. Sci Rep. 2022;12(1):6708. https://doi.org/10.1038/s41598-022-10187-y.

2. Pignalosa FC, Desiderio A, Mirra P et al. Diabetes and cognitive impairment: a role for glucotoxicity and dopaminergic dysfunction. Int J Mol Sci. 2021;22(22):12366. https://doi.org/10.3390/ijms222212366.

3. Hassan A, Sharma Kandel R, Mishra R et al. Diabetes mellitus and parkinson’s disease: shared pathophysiological links and possible therapeutic implications. Cureus. 2020;12(8):e9853. https://doi.org/10.7759/cureus.9853.

4. Raghavan S, Vassy JL, Ho YL et al. Diabetes Mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8:011295. https://doi.org/10.1161/JAHA.118.011295.

5. Petersmann A, Müller-Wieland D, Müller UA et al. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes 2019;127:S1–S7. https://doi.org/10.1055/a-1018-9078.

6. Harding JL, Pavkov ME, Magliano DJ et al. Global trends in diabetes complications: A review of current evidence. Diabetologia. 2019;62:3–16. https://doi.org/10.1007/s00125-018-4711-2.

7. Small DM. Dopamine adaptations as a common pathway for neurocognitive impairment in diabetes and obesity: a neuropsychological perspective. Front Neurosci. 2017;11:134. https://doi.org/10.3389/fnins.2017.00134.

8. Ke C, Narayan KMV, Chan JCN et al. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat Rev Endocrinol. 2022;18(7):413-432. https://doi.org/10.1038/s41574-022-00669-4.

9. Fiory F, Perruolo G, Cimmino I et al. The relevance of insulin action in the dopaminergic system. Front Neurosci. 2019;13:868. https://doi.org/10.3389/fnins.2019.00868.

10. Cheng H, Gang X, Liu Y et al. Mitochondrial dysfunction plays a key role in the development of neurodegenerative diseases in diabetes. Am J Physiol Endocrinol Metab. 2020;318:E750–E764. https://doi.org/10.1152/ajpendo.00179.2019.

11. Mimenza-Alvarado AJ, Jiménez-Castillo GA, Yeverino-Castro SG et al. Effect of poor glycemic control in cognitive performance in the elderly with type 2 diabetes mellitus: the Mexican health and aging study. BMC Geriatr. 2020;20:424. https://doi.org/10.1186/s12877-020-01827-x.

12. de Donato A, Buonincontri V, Borriello G et al. The dopamine system: insights between kidney and brain. Kidney Blood Press Res. 2022;47(8):493-505. https://doi.org/10.1159/000522132.

13. Luo SX, Huang EJ. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. Am J Pathol. 2016;186:478–488. https://doi.org/10.1016/j.ajpath.2015.09.023.

14. Morel C, Montgomery SE, Li L. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depressionlike behaviors. Nat Commun. 2022;131:1–13. https://doi.org/10.1038/s41467-022-29155-1.

15. Amin M, Wu R, Postolache TT, Gragnoli C. Linkage and association of novel DRD2 variants to the comorbidity of type 2 diabetes and depression. Eur Rev Med Pharmacol Sci. 2022;26(22):8370−8375. https://doi.org/10.26355/eurrev_202211_30372.

16. Shpakov AO, Derkach KV, Berstein LM. Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci. OA 2015;1(3):SO25. https://doi.org/10.4155/fso.15.23.

17. Carli M, Kolachalam S, Aringhieri S et al. Dopamine D2 receptors dimers: how can we pharmacologically target them? Curr Neuropharmacol. 2018;16(2):222−230. https://doi.org/10.2174/1570159X15666170518151127.

18. Xi Y, Wen X, Zhang Y et al. DR1 activation inhibits the proliferation of vascular smooth muscle cells through increasing endogenous H2S in diabetes. Aging Dis. 2022;13(3):910-926. https://doi.org/10.14336/AD.2021.1104.

19. Klein MO, Battagello DS, Cardoso AR et al. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39:31–59. https://doi.org/10.1007/s10571-018-0632-3.

20. Wang S, Che T, Levit A et al. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature. 2018;555:269−273. https://doi.org/10.1038/nature25758.

21. Gasecka A, Siwik D, Gajewska M et al. Early biomarkers of neurodegenerative and neurovascular disorders in diabetes. J Clin Med. 2020;9(9):2807. https://doi.org/10.3390/jcm9092807.

22. Hamamah S, Aghazarian A, Nazaryan A et al. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines. 2022;10(2):436. https://doi.org/10.3390/biomedicines10020436.

23. Munuera J, Burguière E. Can we tackle climate change by behavioral hacking of the dopaminergic system? Front Behav Neurosci. 2022;16:996955. https://doi.org/10.3389/fnbeh.2022.996955.

24. Bucolo C, Leggio GM, Drago F, Salomone S. Dopamine outside the brain: the eye, cardiovascular system and endocrine pancreas. Pharmacol Ther. 2019;203:107392. https://doi.org/10.1016/j.pharmthera.2019.07.003.

25. Farino ZJ, Morgenstern TJ, Maffei A et al. New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry. 2020;25(9):2070−2085. https://doi.org/10.1038/s41380-018-0344-6.

26. Korner J, Cline GW, Slifstein M et al. A role for foregut tyrosine metabolism in glucose tolerance. Mol Metab. 2019;23:37– 50. https://doi.org/10.1016/j.molmet.2019.02.008.

27. Zhang Q, Tang Q, Purohit NM et al. Food-induced dopamine signaling in AgRP neurons promotes feeding. Cell Rep. 2022;41(9):111718. https://doi.org/10.1016/j.celrep.2022.111718.

28. Leite F, Ribeiro L. Dopaminergic pathways in obesity-associated inflammation. J Neuroimmune Pharmacol. 2020;15(1):93−113. https://doi.org/10.1007/s11481-019-09863-0.

29. Riedel S, Pheiffer C, Johnson R et al. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front Endocrinol (Lausanne). 2022;12:833544. https://doi.org/10.3389/fendo.2021.833544.

30. Kawano M, Takagi R, Saika K et al. Dopamine regulates cytokine secretion during innate and adaptive immune responses. Int Immunol. 2018;30:591–606. https://doi.org/10.1093/intimm/dxy057.

31. Olivares-Hernández A, Figuero-Pérez L, Cruz-Hernandez JJ et al. Dopamine receptors and the kidney: an overview of health- and pharmacological-targeted implications. Biomolecules. 2021;11(2):254. https://doi.org/10.3390/biom11020254.

32. Быков Ю.В. Роль оксидативного стресса в развитии осложнений при сахарном диабете. Медицинский вестник Северного Кавказа. 2022;3:322−327. https://doi.org/10.14300/mnnc.2022.17080.

33. Быков Ю.В., Батурин В.А. Роль оксидативного стресса в патофизиологии сахарного диабета 1-го типа. Патогенез. 2022);20(4):35−39. https://doi.org/https://doi.org/10.25557/2310-0435.2022.04.35-39

34. Быков Ю.В., Батурин В.А., Волков Е.В. Уровень аутоантител к дофаминовым и NMDA рецепторам у детей в зависимости от степени тяжести диабетического кетоацидоза. Забайкальский медицинский вестник. 2022;3:18-26. https://doi.org/10.52485/19986173_2022_3_18.

35. Hong CT, Chen KY, Wang W et al. Insulin resistance promotes parkinson’s disease through aberrant expression of α-synuclein, mitochondrial dysfunction, and deregulation of the polo-like kinase 2 signaling. Cells. 2020;9:740. https://doi.org/10.3390/cells9030740.

36. Eftekharpour E, Fernyhough P. Oxidative stress and mitochondrial dysfunction associated with peripheral neuropathy in type 1 diabetes. Antioxid Redox Signal. 2022;37(7−9):578−596. https://doi.org/10.1089/ars.2021.0152.

37. Conio B, Martino M, Magioncalda P et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry. 2020;25:82−93. https://doi.org/10.1038/s41380-019-0406-4.

38. Bharadwaj P, Wijesekara N, Liyanapathirana M et al. The link between type 2 diabetes and neurodegeneration: roles for amyloid-β, amylin, and tau proteins. J Alzheimer’s Dis. 2017;59:421–432. https://doi.org/10.3233/JAD-161192.

39. Andersen IB, Andreassen M, Krogh J. The effect of dopamine agonists on metabolic variables in adults with type 2 diabetes: A systematic review with meta analysis and trial sequential analysis of randomized clinical trials. Diabetes Obes Metab. 2021;23:58−67. https://doi.org/10.1111/dom.14183.

40. Rivera-Mancilla E, Altamirano-Espinoza AH, Manrique-Maldonado G et al. Streptozotocin-induced diabetes in rats modifies the role D2, D3 and D4 dopamine receptors play in cardiac sympathetic inhibition. Basic Clin Pharmacol Toxicol. 2022;131(4):262−269. https://doi.org/10.1111/bcpt.13774.

41. Pérez-Taboada I, Alberquilla S, Martín ED et al. Diabetes Causes Dysfunctional Dopamine Neurotransmission Favoring Nigrostriatal Degeneration in Mice. Mov Disord. 2020;35:1636–1648. https://doi.org/10.1002/mds.28124.

42. Lee SE, Han K, Baek JY et al. Taskforce Team for Diabetes Fact Sheet of the Korean Diabetes Association Association Between Diabetic Retinopathy and Parkinson Disease: The Korean National Health Insurance Service Database. J Clin Endocrinol Metab. 2018;103:3231–3238. https://doi.org/10.1210/jc.2017-02774.

43. Vicchi FL, Luque GM, Brie B et al. Dopaminergic drugs in type 2 diabetes and glucose homeostasis. Pharmacol Res. 2016;109:74–80. https://doi.org/10.1016/j.phrs.2015.12.029.

44. Pagano G, Polychronis S, Wilson H et al. Diabetes mellitus and Parkinson disease. Neurology. 2018;90:e1654–e1662. https://doi.org/10.1212/WNL.0000000000005475.

45. Shokrzadeh M, Mirshafa A, Yekta Moghaddam N et al. Mitochondrial dysfunction contribute to diabetic neurotoxicity induced by streptozocin in mice: protective effect of Urtica dioica and pioglitazone. Toxicol Mech Methods. 2018;28:499–506. https://doi.org/10.1080/15376516.2018.1459993.

46. Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A et al. Hyperglycemia-Driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) Type 1 and Type 2 mouse models. Mol Neurobiol. 2018;56:1883– 1896. https://doi.org/10.1007/s12035-018-1195-5.

47. Simo R, Ciudin A, Simo-Servat O, Hernandez C. Cognitive impairment and dementia: a new emerging complication of type 2 diabetes-The diabetologist’s perspective. Acta Diabetol. 2017;54:417–424. https://doi.org/10.1007/s00592-017-0970-975.

48. Koekkoek PS, Kappelle LJ, van den Berg E et al. Cognitive function in patients with diabetes mellitus: Guidance for daily care. Lancet Neurol. 2015;14:329–340. https://doi.org/10.1016/S1474-4422(14)70249-2.

49. Grieco M, Giorgi A, Gentile MC et al. Glucagon-Like Peptide-1: A Focus on Neurodegenerative Diseases. Front Neurosci. 2019;13:1112. https://doi.org/10.3389/fnins.2019.01112.

50. Sergi D, Renaud J, Simola N, Martinoli MG. Diabetes, a Contemporary Risk for Parkinson’s Disease: Epidemiological and Cellular Evidences. Front Aging Neurosci. 2019;11:302. https://doi.org/10.3389/fnagi.2019.00302.

51. De Iuliis A, Montinaro E, Fatati G et al. Diabetes mellitus and Parkinson’s disease: dangerous liaisons between insulin and dopamine. Neural Regen Res. 2022;17(3):523−533. https://doi.org/10.4103/1673-5374.320965.

52. Bini J, Sanchez-Rangel E, Gallezot JD et al. PET imaging of pancreatic dopamine D2 and D3 receptor density with 11C-(+)-PHNO in type 1 diabetes. J Nucl Med. 2020;61:570–576. https://doi.org/10.2967/jnumed.119.234013.

53. Labandeira CM, Fraga-Bau A, Arias Ron D et al. Parkinson’s disease and diabetes mellitus: common mechanisms and treatment repurposing. Neural Regen Res. 2022;17(8):1652−1658. https://doi.org/10.4103/1673-5374.332122.

54. Chaudhry S, Bernardes M, Harris PE, Maffei A. Gastrointestinal dopamine as an anti-incretin and its possible role in bypass surgery as therapy for type 2 diabetes with associated obesity. Minerva Endocrinol. 2016;41(1):43–56.

55. Tavares G, Martins FO, Melo BF et al. Peripheral dopamine directly acts on insulin-sensitive tissues to regulate insulin signaling and metabolic function. Front Pharmacol. 2021;12:713418. https://doi.org/10.3389/fphar.2021.713418.

56. Aslanoglou D, Bertera S, Sánchez-Soto M et al. Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl Psychiatry. 2021;11(1):59. https://doi.org/10.1038/s41398-020-01171-z.

57. Wei H, Zapata RC, Lopez-Valencia M et al. Dopamine D2 receptor signaling modulates pancreatic beta cell circadian rhythms. Psychoneuroendocrinology. 2020;113:104551. https://doi.org/10.1016/j.psyneuen.2019.104551.

58. Freyberg Z, McCarthy MJ. Dopamine D2 Receptors and the circadian clock reciprocally mediate antipsychotic druginduced metabolic disturbances. Schizophr. 2017;3(1). https://doi.org/10.1038/s41537-017-0018-4.

59. Song J, Kim J. Degeneration of dopaminergic neurons due to metabolic alterations and Parkinson’s disease. Front Aging Neurosci. 2016;8:65. https://doi.org/10.3389/fnagi.2016.00065.

60. Haas J, Berg D, Bosy-Westphal A, Schaeffer E. Parkinson’s disease and sugar intake-reasons for and consequences of a still unclear craving. Nutrients 2022;14(15):3240. https://doi.org/10.3390/nu14153240.

61. Liu S, Borgland SL. Insulin actions in the mesolimbic dopamine system. Exp Neurol. 2019;320:113006. https://doi.org/10.1016/j.expneurol.2019.113006.

62. Li H. Wu R, Xi Y et al. Dopamine 1 receptors inhibit apoptosis via activating CSE/H2 S pathway in high glucose-induced vascular endothelial cells. Cell Biol Int. 2022;46(7):1098−1108. https://doi.org/10.1002/cbin.11794.

63. Nguanmoo PS, Tanajak P, Kerdphoo S et al. GLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43−50. https://doi.org/10.1016/j.taap.2017.08.005.

64. Ter Horst KW, Lammers NM, Trinko R et al. Striatal dopamine regulates systemic glucose metabolism in humans and mice. Sci Transl Med. 2018;10:3752. https://doi.org/10.1126/scitranslmed.aar3752.

65. Pang Y, Lin S, Wright C et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience. 2016;318:157–165. https://doi.org/10.1016/j.neuroscience.2016.01.020.

66. Быков Ю.В., Батурин В.А. Определение уровней аутоантител к нейрорецепторам у детей больных сахарным диабетом 1-го типа. Патологическая физиология и экспериментальная терапия. 2022;66(4):61−66. https://doi.org/10.25557/0031-2991.2022.04.61-66


Рецензия

Для цитирования:


Быков Ю.В., Батурин В.А. Нарушение дофаминергической системы в патофизиологии сахарного диабета. Уральский медицинский журнал. 2023;22(4):119-127. https://doi.org/10.52420/2071-5943-2023-22-4-119-127

For citation:


Bykov Yu.V., Baturin V.A. Disruption of the dopaminergic system in the pathophysiology of diabetes mellitus. Ural Medical Journal. 2023;22(4):119-127. (In Russ.) https://doi.org/10.52420/2071-5943-2023-22-4-119-127

Просмотров: 46


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)